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Abstract

Algebraic multigrid (AMG) solvers find wide use in scientific simulation codes. Their ideal com-
putational complexity makes them especially attractive for solving large problems on parallel machines.
However, they also involve a substantial amount of data movement, posing challenges to performance
and scalability. In this paper, we present an algorithm that provides a systematic means of reducing
data movement in AMG. The algorithm operates by gathering and redistributing the problem data to
reduce the need to move it on the communication-intensive coarse grid portion of AMG. The data is
gathered in a way that ensures data locality by keeping data movement confined to specific regions of
the machine. Any decision to gather data is made systematically through the means of a performance
model. This approach results in substantial speedups on a multicore cluster when using AMG to solve
a variety of test problems.

I. INTRODUCTION

The rising scale of HPC systems not only requires applications to match the increased level
of concurrency available in the system, but also imposes new constraints and limitations, in
particular in terms of resilience and power consumption. The latter is directly tied to data
movements, which are responsible for a majority of the power consumed in a system. To
address these challenges and to successfully exploit future architectures, we therefore need new
algorithmic approaches that specifically target the reduction of data movements and at the same
time offer new avenues for resiliency.

In our work we approach this topic systematically from the algorithmic side focusing on
Algebraic Multigrid (AMG) methods, a class of solvers for large, sparse linear systems of
equations that finds use in a wide range of scientific applications. AMG has the ideal property
of having a computational complexity that is linear in the number of unknowns, when it works
well, and has shown excellent weak scaling to the size of current high-end systems, such as IBM
Blue Gene/L [1] and Blue Gene/P [2]. However, for architectures with wide multicore nodes,
AMBG is starting to run into scaling bottlenecks, which are directly connected to its algorithmic
approach. AMG obtains its optimal computation complexity by using smaller “coarse grid”
problems to accelerate the solution of the original “fine grid” problem. Since the number of
nonzeros per row for the matrices on the coarser levels grows, communication complexity also
increases significantly, leading to a large number of messages. Making things worse, the number
of nodes involved in the communication only decreases slowly, in particular on systems with
wide multicore nodes, since often at least one core per node still participates at coarser grid
levels. However, the large number of processes at coarser grid levels can be aggregated and
the resulting set of tasks can be either executed on a subset of nodes (agglomeration approach)



or several copies of this set redundantly across various subsets of nodes (redundant approach).
If the strategy is applied at the correct level for the redundant approach and in general for
the agglomeration approach, the communication requirements at coarser levels are significantly
reduced, and in the extreme case even eliminated by aggregating the computation onto a single
process.

In this paper we focus on the latter approach, the use of redundancy, since it not only
reduces communication requirements, but also offers potentials for implicit resiliency due to the
redundant nature of the computation. Our algorithm partitions the problem domain into chunks
and distributes these chunks to subsets of the involved processes. By carefully selecting which
processes get which chunks, communication can be made to occur only in localized fashion.

One of the critical aspects of this approach is the decision about the right level to switch to
redundant cycling. In our approach we guide this decision at runtime based on a performance
model of the AMG cycle, which we extended to include redundant cycling. This enables us to
automatically tune our approach to the input set without loss of generality.

In particular, this paper makes the following contributions:

« We explore a new algorithmic approach for AMG that reduces overall communication using

redundant data distributions,

« We extend an existing performance model to cover redundant data distribution schemes,

and '

« We use this model to dynamically determine the appropriate level for switching to the

redundant scheme.
Overall, our algorithm combined with our novel model guided dynamic level adaptation is up
to 3x faster when using AMG to solve a variety of realistic problem cases.

II. ALGEBRAIC MULTIGRID

Multigrid methods are widely used when solving large equation systems on parallel machines,
since they are optimal, i.e. they can solve a linear system with N unknowns with O(N)
comutational work. They achieve this by performing part of the work that other solvers would
perform on the original “fine grid” problem on smaller “coarse grid” problems instead. This
process is known as coarse grid correction. After the application of an inexpensive smoother, such
as a Jacobi or Gauss-Seidel iteration on the fine grid, which results in an approximate solution,
that approximation is corrected on the next coarsest grid. The correction can be obtained either
through direct solution or another round of smoothing followed by a further recursive coarse
grid correction. The use of multiple grids gives the process the term multigrid; we consider here
its simplest form, the V-cycle, in which the work proceeds from the finest grid to the coarsest
grid and then back to the finest grid. We number the grids from finest to coarsest; if there are
L grids, the finest grid is level 0, and the coarsest grid is level L — 1.

The first multigrid methods were geometric in nature, and were used to solve problems on
structured grids. AMG extends multigrid to cover problems on unstructured grids such as finite
element meshes. All that is required is a linear system Az = b. The grid information is inferred
from the graph of A. This requires AMG to operate in two phases. The first is a setup phase, in
which the hierarchy of grids including various operators is determined. At each level, the grid
points that will remain on the next coarsest grid are selected, followed by the formation of an
operator which restricts the residual on that level to the next coarsest grid and a prolongation
operator, which interpolates the correction back up from that grid. Here, as is often the case in
practice, the restriction interpolation is chosen to be the transpose of the interpolation operator.



The solve operator for the next grid is then formed by multiplying the restriction, the solve and
the interpolation operator of the current level. Once the hierarchy of grids has been set up, AMG
switches to the solve phase. In the solve phase, a multigrid cycle, such as a V-cycle, is applied
to the hierarchy of grids generated in the setup phase.

There are a number of implementations of AMG, which offer access to a wide variety of
coarsening and interpolation schemes for generating the hierarchy of grids and a number of
smoothers for use with the solve phase. In our experiments, we use the BoomerAMG solver [3]
in the hypre software library [4]. We use HMIS coarsening [5] with extended+i interpolation [6]
truncated to at most 4 elements per row. For 3D problems, we also use aggressive coarsening
with multipass interpolation [7] on the first level. For the smoother, we use hybrid Gauss-Seidel,
which is comprised of Gauss-Seidel iteration between process boundaries and Jacobi iteration
across process boundaries.

The efficient implementation of multigrid methods on parallel machines has been an area of
research for quite some time, leading to the development of several variants with reduced data
movement. Much of this work is centered around the basic idea of accumulating and redistibuting
the problem data onto a subset of the processes at a particular level of the multigrid cycle and
performing the rest of the cycle on those processes only. One option to implement such a scheme
is to redundantly distribute the data onto those processors. Then each one has the same data,
meaning that they no longer have to communicate with each other during the redundantly treated
levels. Gropp [8] found this approach to be beneficial for geometric multigrid in some cases, and
significant speedups could be achieved for AMG [9], but in both cases the benefits are diminished
at scale. Womble and Young [10] used a more gradual, bottom-up approach to redundancy in
geometric multigrid, but did not consider data locality.

Another variant of the data gathering approach uses plain agglomeration, i.e., it involves
simply concentrating the data replicated by the redundant approach onto a subset of the involved
processes without replication, performing the rest of the cycle there, and then redistributing
the result to the originally involved processes. Such an approach has been used by Nakajima
[11] for the coarse grid solve, in Sandia’s ML smoothed aggregation AMG solver [12] and by
Sampath and Biros [13] for an octree-based geometric multigrid solver to deal with convergence
degradation and/or load imbalance.

Our focus here is on the overall reduction of data movement. While future plans include the
investigation of both the agglomeration and redundant approach, we focus first on the redundant
variant, due to its potential for data recovery and improved fault tolerance in AMG. In the
next section, we present our algorithm for reducing data movement in AMG, which relies on a
performance model to decide the amount and level of data gathering to be performed. This model
can provide the necessary information to find the best tradeoff between reduced data movement
and excess computation. Additionally, our algorithm is designed to gather data within specific
portions of the machine to improve data locality, further reducing the amount of data movement.

III. ALGORITHM

Our algorithm takes the basic redundant approach of [8] and [9], but significantly enhances
scalability by distributing smaller portions of the problem data to each process. Since, as
a consequence, this will not be the entire problem data, the redundant phase still requires
communication, but there will be far fewer messages to send. To further reduce communication,
the algorithm also allows for the data to be gathered in specific regions of the machine to improve
data locality.



Fig. 1. Illustration of chunk data distribution with 4 chunks (blue blocks) and 12 processes (red, orange, and green shapes).
Each chunk is owned by 3 processes depicted as having the same shape. The communication pattern can be regularized as
shown by the arrows, with processes in a color group communicating only with each other.

We call our algorithm the chunks algorithm because the data is gathered into a set of chunks
that only have to communicate with other chunks, but do not communicate within a chunk as
illustrated in Figure 1 for 4 chunks with 3 processes each. For the agglomeration approach, each
chunk would only consist of one process. As one of the key contributions, we tie our algorithm
to a performance model that allows the algorithm to dynamically decide when to switch to
redundancy to best improve performance. The model can also be applied to the agglomeration
approach.

A. Algorithm Details

In our implementation, we keep coarse grid points on the same process as their corresponding
fine grid points until the level, on which the chunks algorithm is applied. The chunks algo-
rithm is then implemented as follows: During the AMG setup phase, we form two sets of
MPI communicators: collective communicators, which gather data to form chunks, and point-
to-point communicators, to handle communication between chunks. We create one collective
communicator for each chunk, and one point-to-point communicator for each cluster, which we
define to be a group of processes in different chunks that will need to exchange data during
the solve phase. After the communicators are formed, all processes within a chunk perform
MPI_Allgatherv operations to acquire the matrix data for their chunk. Then, new parallel
matrices are formed over processes in each cluster. Once this is complete, each matrix is treated
as the finest level operator for a new coarse solver object, and the parallel AMG setup routine is
called for each of the new matrices. If there is just one chunk, then it is the basic redundant case.
In this case, the collective communicator is MPI_COMM_WORLD (or a smaller communicator
consisting of just the active processes if some have dropped out), and there is no point-to-point
communication. .

In the solve phase, we perform additional MPT_Allgatherv operations in the cycle during
the switchover to the redundant phase to split and reorganize the right hand side and the solution
vector into chunks. The solve cycle is then called on the coarse solver object and the reorganized
right hand side and solution vector. Once that portion of the cycle is complete, the appropriate
pieces of the result are copied from the chunks solution vector to the non-chunks solution vector.
This step requires no communication, as the processes in each chunk will already have all data
needed stored locally.

To maximize the benefits of the chunks algorithm, we must place data in a way that keeps
communication within well-defined units of the machine, as this preserves locality. Such consid-
erations are going to be even more important on future machines, with data movement becoming
more and more expensive relative to computation in terms of both performance and power. How
to best do this depends on the mapping of processes to nodes in the machine. In Figure 2, we
illustrate mapping strategies for 12 processes and 4 chunks.
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Fig. 2.  Assignment of processes to collective and point-to-point communicators for chunks algorithm for the case of 12
processes and 4 chunks using a block mapping (left) or a cyclic mapping (right). Processes with the same color are in the
same collective communicator (i.e. own the same chunk of data); processes in the same box are in the same point-to-point
communicator.

B. Data Gathering Automation with the Performance Model

We use a performance model of the AMG solve cycle to automate the decision to switch to the
chunks algorithm. Our model is based on a simple latency-bandwidth model for communication
and then adds a communication distance term and penalties to take into account multicore issues
and limited bandwidth. It is able to capture the performance of AMG on a number of different
machines and under MPI-only and hybrid MPI/OpenMP programming models while making use
of machine parameters that can be determined from simple measurements and/or the topology
of the interconnect; the details of how are in our past work on this subject [14]-[16].

When deciding whether or not to switch to chunks at a given level I/, we use the model to
predict Toswitch» the time spent at this level if we did not switch, and Tiyitcn, the time spent if we
switch. If the latter is less, then we switch. There is no benefit from switching at a lower level
because switching right away would capture the benefit from the later switch plus the benefit
from switching at the current level.

To determine Toswitch, We Use the model to predict the time of five matrix-vector multiplica-
tions using the existing level [ solve operator. Three of them represent the operations normally
done with the solver operator, smoothing and residual formation. The other two represent
restriction and interpolation. We have to approximate these with the solve operator, as at the
stage in the setup where we have to make the decision, the restriction and interpolation operators
have yet to be formed. To determine Tyitch, We use the model to predict the time of five matrix-
vector multiplications with a redistributed solve operator and two all-gather operations, one to
gather the problem data and one to gather the right-hand side. For the redistributed operator,
we assume for the purposes of the model that the number of floating point operations and data
sent per message are divided equally among the chunks, and that each chunk sends messages to
every other chunk. We assume the network parameters needed for the model have already been
measured; we measure the computation rate from the time spent running 10 MatVecs with the
locally stored portion of the solve operator.

We assume the all-gather operation gathers the problem data over a binary tree and then
broadcasts that data along the same tree. Using the baseline -8 model from our past work,
where « is the communication start-up time and § is the time required to send one double-
precision floating point entry, which we modify as needed to suit the architecture, the expression
for the all-gather time is

P N £
Tallga‘uher =2 {Ing F-‘ a + 25 (1 4+ [lng E_‘) !6

where P is the number of processes, C' is the number of chunks, and N is the number of
unknowns. If Thwiteh, < Thoswitch, W€ make the switch to chunks, unless gathering the data would
cause the matrix or the vector to spill out of cache if it did not before gathering, in which case
we do not switch, as spilling out of cache can have a major negative impact on performance. We
currently assume C is the number of MPI tasks per node, though we will vary this parameter
in the future to better tune it to the architecture.



Problem Setup Times Cycle Times ]
7pt Laplace 64 Cores 512 Cores 4096 Cores | 64 Cores 512 Cores 4096 Cores
I No Chunks 1.04 s 432s 1076 s 508 ms 1384 ms 1792 ms
Chunks 0.76 s 140 s 376 s 344 ms 67.9 ms 114.7 ms
Speedup 1.37 3.08 2.86 1.48 2.04 1.56
27pt Stencil 64 Cores 512 Cores 4096 Cores | 64 Cores 512 Cores 4096 Cores
No Chunks 1.14 s 420 s 987 s 74.7 ms 149.4 ms 186.7 s
Chunks 0.68 s 1.53 s 358 s 48.9 ms 77.7 ms 130.3 ms
Speedup 1.68 2.74 2.76 1.53 1.92 1.43
" Convection-Diffusion | 64 Cores 512 Cores 4096 Cores | 64 Cores 512 Cores 4096 Cores
" No Chunks 0.95 s 394 1062 s 465ms 1190ms 1679 ms |
Chunks 0.79 s 1.69 s 358s 35.8 ms 82.7 ms 96.1 ms
Speedup 1.20 233 297 1.30 1.44 1.75
“9pt Laplace 64 Cores 256 Cores 1024 Cores | 64 Cores 256 Cores 1024 Cores
" No Chunks 047 s 098 s 1355 259ms  41.6 ms 467 ms |
Chunks 028 s 0.65 s 0.94 s 22.7 ms 35.6 ms 35.3 ms
Speedup 1.68 1.51 1.44 1.14 1.17 1.32
Rotated Anisotropy | 64 Cores 256 Cores 1024 Cores | 64 Cores 256 Cores 1024 Cores |
No Chunks 047 s 098 s 1.83 s 38.7 ms 58.0 ms 78.2 ms
Chunks 0325 0.71 s 1.14 s 26.4 ms 40.6 ms 54.7 ms
Speedup 1.47 1.38 1.60 1.46 1.43 143 |
TABLE 1

RESULTS OF CHUNKS VS. ORIGINAL ALGORITHM FOR EACH TEST PROBLEM.

IV. RESULTS

We tested our algorithm on Hera, a multicore Linux cluster at Lawrence Livermore National
Laboratory. Hera consists of 800 compute nodes, with four quad-core 2.3 GHz AMD Opteron
processors per node and a cache size of 512 KB per core. The nodes are connected by a DDR
Infiniband interconnect organized as a two-level fat-tree. The network parameters needed for the
performance model were measured by microbenchmarking and/or calculated from the network
topology. More detail is available in [15].

For our test problems, we used a 3D Laplacian with a 7-point and a 27-point stencil, a
non-symmetric convection-diffusion problem, a 2D Laplacian with a 9-point stencil and a 2D
problem with an anisotropy of 0.01 rotated by 60 degrees. The 3D problems were run with
30 x 30 x 30 points per core and run on 64, 512, and 4096 cores. The 2D problems were run
with 150 x 150 points per core and run on 64, 256, and 1024 cores. The core counts were chosen
so that the global problem size doubles in each dimension with each increase in core count. For
each problem, we ran a combination of one AMG setup and 10 V-cycles ten times, averaging
the reported times to avoid impact caused by noise. We used a cyclic mapping of MPI tasks
per node, and the cyclic collective and point-to-point communicators for the chunks algorithm, -
keeping communication during the chunks stage entirely within nodes.

Table I presents the results for the original algorithm (No Chunks), the chunks algorithm
with the performance model used to guide when to make the switch, and the speedup achieved.
We achieved substantial speedups for all 3-dimensional cases, almost always over 40%. The
setup phase in particular showed great improvement, with most speedups well over 2x, and
much improved weak scalability. We also saw improvements for the 2-dimensional cases, which
generally have much lower computational and communication complexities and therefore there
is less potential for performance improvement.



V. CONCLUSIONS

We have successfully introduced a new algorithm that improves the performance of AMG
through the reduction of data movement. The algorithm uses redundant data distribution to
reduce and regularize the communication pattern of AMG, and enables communication to take
place within well-defined and localized units of the machine. We have coupled our algorithm
with a performance model that can decide dynamically at runtime when switching to the new
algorithm is beneficial. In our experiments, we achieved speedups of up to 3x in the setup phase
and 2x in the solve phase.

Current trends in computer architecture forecast an increasing role for our algorithm in
preparing AMG for larger-scale machines. Per-chip and per-node core counts are expected to
increase, with some researchers [17] envisioning a future with thousands of cores per chip. The
chunks algorithm enables adaptation to this future. As the size of the problems being solved on
larger machines increases, so can the number of chunks, to keep the problem size per core from
being too large, while still keeping interprocess communication entirely within chips or nodes.
In addition, the algorithm can be extended in a tree-like fashion by applying the simple chunks
algorithm recursively to each chunk.

There are many avenues for future work. We are interested in the potential redundancy brings
for resiliency and further algorithmic innovation. We expect to use the extra data to recover more
quickly from faults. Furthermore, we will explore extensions to this approach that enable us to
perform different computations on the duplicated pieces of data in parallel and then recombine
them in a way that accelerates convergence. This idea was once popular [18], but was later
found not to have enough benefit to overcome the cost of the extra work [19]. However, with
the chunks algorithm able to place the duplicated pieces in places of the machine where work
on each piece will not interfere with work on other pieces, we are hoping to see some form
of performance gain from such an approach. Additionally, power is a growing concern and the
reduction in data movement realized by this work is a significant first step to reducing power
requirements. We will explore this issue further and investigate how to tune the redundancy to
reduce power usage further without a loss in performance.

Another interesting topic is the interaction of the chunks algorithm with changes to the
programming model. For simplicity, we considered an MPI-only programming model in this
paper, but hybrid models that combine MPI with other programming models are becoming
increasingly popular, most notably hybrid MPI/OpenMP for multicore clusters. The use of such
a programming model has shown significant performance gains as well as increased scalability
on several architectures [20], but will not entirely address the performance challenges it faces
on coarse grids, particularly when dealing with systems at extreme scales. The combination of
the chunks algorithm, which addresses the coarse grid difficulties, and a hybrid programming
model, is therefore very promising. In summary, the chunks algorithm and the future research
opportunities it opens have significant potential for ensuring the scalability of AMG to next
generation parallel machines.
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